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A Class of Multiresolution Stochastic Models
Generating Self-Affine Images

Brendt Wohlberg and Gerhard de Jager

Abstract— Fractal image compression is based on the rather
poorly motivated assumption that “natural” images exhibit sig-
nificant affine self-similarity. The accuracy of this assumption
is evaluated by a comparison between the statistics of natural
images and those of a multiresolution stochastic model designed
to generate images exhibiting affine self-similarity as assumed
by fractal coding techniques. These comparisons suggest that
self-affinity does not represent a particularly accurate character-
isation of image statistics.

Index Terms— Fractals, Higher order statistics, Image coding,
Stochastic image models, Wavelet transforms

I. I NTRODUCTION

Fractal coding involves the representation of an image by a
contractive affine transform of which the fixed point is close
to the original image [1]. While the original fractal coding
schemes constructed this transform as the composition of
mappings between image subblocks, analysis is simplified by
considering this construction in the wavelet transform domain,
where the mappings between subblocks correspond, given
some restrictions on the fractal coding scheme, to mappings
between subtrees of detail coefficients [2]. In the simplest form
of coding within this framework, all detail coefficients at some
fixed resolution (id) become the roots of “domain” subtrees,
the detail coefficients at the next resolution (ir = id + 1)
forming the roots of the “range” subtrees (see Figure 1). An
image is encoded by finding a matching domain subtree for
each range subtree, such that some scalar multiple of the
domain is sufficiently close to the range; the fractal repre-
sentation consists of all detail coefficients up to and including
resolutionid, together with the identity of the domain subtree
and associated scaling factor1 selected for each range subtree.

Decoding is best explained by reference to Figure 1, in
which id = 1. Assume thatD0 is the matching domain for
R0 andR2, andD1 is the matching domain forR1 andR3,
and label the scaling factor for the domain mapped toRj

as sj . Each range subtree is reconstructed by applying the
corresponding mapping defined during the encoding procedure
- the matching domain subtree is scaled and copied onto the
range subtree. Since detail coefficients at resolutions greater
than id are not available when decoding is initiated, a single
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1These scaling factors should not be confused with the scaling coefficients
associated with the scaling function in wavelet analysis.
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Fig. 1. Domain (D0, D1) and range (R0, R1, R2, R3) subtrees in the
wavelet decomposition of a one-dimensional signal. Note that the highest
resolution detail coefficients are omitted from the domain subtrees to ensure
that they have the same size as the range subtrees.

level of the subtree mappings is applied to generate the detail
coefficients at resolutionid + 1 (d2,0 = s0d1,0, d2,1 = s1d1,1,
d2,2 = s2d1,0, and d2,3 = s3d1,1 in Figure 1), the next
level of mappings generates resolutionid + 2 (d3,0 = s0d2,0,
d3,1 = s0d2,1, etc. in Figure 1), and so on until all necessary
detail coefficients have been generated.

If isometry operations in the spatial domain are avoided,
there is no mixing between coefficients in the horizontal, ver-
tical and diagonal subbands of a non-standard two-dimensional
wavelet basis [2], and one may consider decoding separately
in each of these three families of subbands; encoding based on
combined subtrees from all three directions merely implies that
domain positions and associated scaling factors are identical
for ranges at corresponding positions in each of the directional
subbands (see Figure 2). The decoding procedure outlined in
Table I describes how the mappings from domain to range
subtrees may be implemented as operations on individual
detail coefficients.

II. GENERALISED LATTICE VECTORQUANTISATION

INTERPRETATION

Considering an image as an element of a vector space,
each combination of domain to range assignments generates
a manifold within this space, where the coordinates on each
manifold consist of the full set of scaling factors and low
resolution detail coefficients. The restriction of an image to
one of these manifolds constitutes a form of pre-quantisation,
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Fig. 2. Domain and range subtrees composed of subtrees rooted at the same
resolution in each of the three directional subbands of a non-standard wavelet
decomposition.

TABLE I

WAVELET DOMAIN FRACTAL DECODING.

Definitions: (decoding generates anN ×N image)
id Domain root resolution Nd = 2id

ir = id + 1 Range root resolution Nr = 2ir

imax Resolution of finest detail N = 2imax+1

Fractal representation: j, k ∈ {0, 1, . . . , Nr − 1}
c0;0,0, di;j,k 0 ≤ i ≤ id Low resolution detail
pj,k, qj,k ∈ {0, 1, . . . , Nd − 1} Coordinates of domain mapped

to range at coordinatesj, k
sj,k Scaling factor applied to do-

main mapped to range at coor-
dinatesj, k

Algorithm:
For all i from ir to imax (ir ≤ i ≤ imax):

a = bj2ir−ic c = 2i−ir pa,b + j mod (2i−ir )
b = bk2ir−ic d = 2i−ir qa,b + k mod (2i−ir )

di;j,k = 1
2
sa,bdi−1;c,d

with complete quantisation being achieved by quantisation of
the coordinates on the manifold. This representation may be
considered as a generalisation of Lattice Vector Quantisation
[3], where the reconstruction levels have a far more complex
arrangement than a lattice, and are determined by the form
of the fractal coding scheme (including, of course, the quan-
tisation applied to the fractal representation) [4, ch. 5]. It is,
however, certainly not clear why this should be expected to
provide an efficient representation for “natural” images.

Optimal reconstruction vectors for ak-dimensional source
X with pdf fX(x) have distribution

f
k

k+2
X (x)

in the high resolution case [3, pp. 338-340] and with the
MSE distortion measure [3, pg. 471]. Therefore, for largek,
the density of reconstruction points in an optimal codebook
should correspond approximately to the probability density of
the source. One may therefore assess the accuracy with which
a codebook describes a source by comparing corresponding
statistics of the source and codebook.

III. STOCHASTIC MODEL

A stochastic signal model exhibiting the form of affine
self-similarity assumed by a particular fractal coding scheme
may be constructed by considering the elements of the fractal
representation (see Table I) as suitably distributed random
variables driving the iterative decoding process, just as a
random innovations processis passed through a linear filter
to generate an autoregressive model [5, ch. 2]; this fractal
model generates deterministic fractal signals, as opposed to
stochastic fractal signals, which may be generated by consid-
erably less complex statistical models, such as multiresolution
autoregressive models in which the autoregressive relationship
is defined between coefficients at successive resolutions within
the tree of detail coefficients in the wavelet transform domain,
rather than between successive samples within the domain of
the original signal [6]. The density of vectors generated by this
model corresponds to the high resolution limit of the related
codebook described in the previous section.

Distributions for the low resolution detail coefficients, and
scaling factors and domain positions for each range block,
were chosen by comparison with the statistics of a set of
natural images, since the model statistics are desired to match
those of natural images as far as possible. Detail coefficient
statistics for natural images were estimated from the wavelet
transforms of a set of 18 test images of512×512 pixels each;
the spline wavelet basis [7, table II] used by Davis [2] was
used for these calculations.

The lower resolution detail coefficients were found to have
an approximately Laplacian distribution, as were the quotients
of detail coefficients at consecutive resolutions [4, ch. 6];
a Laplacian distribution was therefore chosen for the initial
detail coefficients (di;j,k for 0 ≤ i ≤ id) as well as for
the scaling factors (sj,k). Each domain was allocated equal
probability of selection for a particular range (pj , k and qj,k)
since this distribution is approximately that observed in fractal
coding experiments [1, pp. 69-71] (although there is some
disagreement in the literature - see reference [4, pp. 46-47,
75-77] for a discussion of this issue).

IV. VARIANCE DECAY

Wavelet domain statistical analysis has been found to be a
powerful tool in the analysis of non-stationary signal models
such as fractional Brownian motion (fBm) [8]. The variation
in detail coefficient variance with increasing resolution is an
important statistical property in the wavelet transform domain,
corresponding to the power spectral density in many respects
- the power spectral density measures signal energy at each
frequency, whereas the detail coefficient variance measures
signal energy at each resolution.

As a result of the subtree mapping mechanism, each detail
coefficient is the product of a subtree scaling factor and a
lower resolution detail coefficient, which is itself the product
of a scaling factor and a lower resolution detail coefficient,
and so on until resolutionid. Since the same subtree scaling
factor may occur multiple times as one traces back this path
of influence on a particular detail coefficient (one of the
primary differences between this model and multiresolution
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autoregressive models), the second order statistics of high res-
olution detail coefficients are dependent2 on the higher order
statistics [10] of the scaling factors, and detail coefficients at
resolutionid. Since analytic evaluation of the detail coefficient
variance for the wavelet domain self-affine models is rather
complicated [4, ch. 5], results presented here were generated
by Monte Carlo methods. An ensemble of 10000 images of
512 × 512 pixels was generated by randomly generating the
low resolution detail coefficients, scaling factors and domain
positions for each range block, decoding each set, as described
in Table I, to produce an image.

Measurements of the wavelet transform domain behaviour
of the set of test images indicate similar variance decay for the
horizontal, vertical and diagonal directional subbands; these
values are averaged here for the purpose of comparison with
the self-affine model. Thelog decay with increasing resolution
of fBm models provides a good fit to the measured statistics
of the test images for resolution 3 and higher. Figure 3 depicts
a comparison between this decay and that for the self-affine
model with a variance of4.38×105 for the detail coefficients
at resolutionid = 3, and a variance of0.77 for the scaling
factors; note the deviation fromlog decay for the self-affine
model. Increasingid to 4 or greater (as well as retaining
id = 3 but changing the scaling factor pdf to uniform) reduces
the deviation fromlog decay to the extent that it is barely
visible on a graph such as Figure 3. Given suitable restrictions
then, the variance decay of the self-affine model may be made
compatible with that measured for natural images. All statistics
for self-affine models discussed in the following sections are
for id = 5, since this choice provides a good match between
model and measured variance decay, and corresponds to range
blocks of 8 × 8 pixels; lower values ofid correspond to
unreasonably large range blocks.
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Fig. 3. Measured variance decay for the set of test images, compared with
variance decay for the self-affine model with domain roots at resolution 3.

2Note that the pdfs of scaling factors and initial detail coefficients are not
significant if one considers a stochastic model derived from the coding scheme
of Rinaldo and Calvagno [9], since independent scaling factors are utilised
between each consecutive pair of levels in the coefficient tree.

V. I NTER- AND INTRASUBBAND CORRELATIONS

Examination of the ensemble of self-affine images indicates
that the correlations3 between adjacent detail coefficients in
the same subband, averaged over all positions in the subband
(stationarity is necessary for this procedure to provide a
full description of the correlation structure of the subband),
are very close to zero. In comparison, natural images have
small but significant correlations between detail coefficients
in horizontal and vertical directional subbands, and very small
correlations in the diagonal directional subband. The horizon-
tal directional subbands (the subbands containing horizontally
oriented edges) have correlations in the region of 0.3 with
their neighbours to the left and right, and correlations in
the region of -0.2 with their neighbours above and below,
while correlations with neighbours in the diagonal directions
are considerably smaller. Similar behaviour is observed for
the vertical directional subbands, but with reversal of the
behaviour for vertical and horizontal neighbours.

Correlations between child and parent coefficients in the
self-affine model are very small negative values consistent
with a correlation of 0.0. Natural images, in contrast, exhibit a
child-parent correlation of approximately 0.1 in the horizontal
and vertical directional subbands, and approximately 0.0 in the
diagonal directional subbands.

Detail coefficients in both the self-affine model and natural
images are therefore, at a rough approximation, uncorrelated.
A more accurate view, however, reveals significant differences
between the respective correlation structures.

VI. CHILD -PARENT JOINT DISTRIBUTIONS

While smooth basis wavelet transforms, such as that utilised
here, are reasonably effective in decorrelating the pixels of
natural images, significant dependence remains between parent
and child coefficients (while the sign of a child coefficient
is approximately uncorrelated with that of its parent, the
magnitudes are correlated [11]) - visible in the transformed
image by the recurrence of similar patterns of edges in
different resolution subbands. Many of the current state-of-
the-art image coders, such as the EZW [12] algorithm, were
designed to take this dependence into account.

Correlations between the squares of child and parent co-
efficients are presented in Figure 4 as a measure of the
strength of the dependence between coefficient magnitudes.
Although increasing with resolution, the correlation is signif-
icantly smaller for the self-affine model than in any of the
directional subbands of natural images. A simple linear model
of child-parent dependence may be constructed to exhibit
the variances, correlations, and correlations between squared
coefficients observed for natural images.

A comparison between the joint probability distributions
of child and parent coefficients for natural images and those
of the self-affine model is presented in Figure 5, in which
substantial differences between the distributions are visible.
Noting that the joint distribution of independent Laplacians
has diamond-shaped contours, the concavity of the contours

3Correlation is used here in the sense of normalised covariance.
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Fig. 4. Correlation between squares of child and parent coefficients for
natural images and the self-affine model.

for the model reflects a tendency for relatively large parent
coefficients to be associated with smaller child coefficients
than for an independent distribution (although this tendency
is not sufficiently simple to produce a negative correlation
between squared coefficients). The convexity of the contours
for natural images reflects the tendency for large magnitude
parent coefficients to be associated with large magnitude
child coefficients, as expected from the correlation between
magnitudes described above.

VII. C ONCLUSIONS

While appropriate choice of the parameters of the self-
affine model allows a good match with the variance decay
with increasing resolution observed for natural images, the
resulting self-affine model does not accurately represent ei-
ther the correlation structure of the detail coefficients or the
additional dependence between child and parent coefficients.
The form of self-affinity considered here therefore does not
appear to represent a more accurate characterisation of image
statistics than vastly simpler models such as multiresolution
autoregressive models.

While a number of simplifications have been made in
the construction of this model, it does not appear likely
that more complex purely self-affine models would provide
a significantly improved match with image statistics. This
suspicion is supported by the tendency for the most effective
fractal coding algorithms not to rely on a purely self-affine
representation, but to incorporate aspects of alternative coding
strategies [13].
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(f) Self-affine images, resolution 7

Fig. 5. Child-parent joint probability densities for separate ensembles of test images (a distribution for the combined horizontal, vertical, and diagonal
directional subbands is given since similar behaviour is observed in each) and images generated by the image model. Distributions are labelled by the
resolution of the parent coefficients, and contours are at the same values for each of the three pairs of plots.


